356 research outputs found

    Pseudo-factorials, elliptic functions, and continued fractions

    Full text link
    This study presents miscellaneous properties of pseudo-factorials, which are numbers whose recurrence relation is a twisted form of that of usual factorials. These numbers are associated with special elliptic functions, most notably, a Dixonian and a Weierstrass function, which parametrize the Fermat cubic curve and are relative to a hexagonal lattice. A continued fraction expansion of the ordinary generating function of pseudo-factorials, first discovered empirically, is established here. This article also provides a characterization of the associated orthogonal polynomials, which appear to form a new family of "elliptic polynomials", as well as various other properties of pseudo-factorials, including a hexagonal lattice sum expression and elementary congruences.Comment: 24 pages; with correction of typos and minor revision. To appear in The Ramanujan Journa

    Analytic urns

    Full text link
    This article describes a purely analytic approach to urn models of the generalized or extended P\'olya-Eggenberger type, in the case of two types of balls and constant ``balance,'' that is, constant row sum. The treatment starts from a quasilinear first-order partial differential equation associated with a combinatorial renormalization of the model and bases itself on elementary conformal mapping arguments coupled with singularity analysis techniques. Probabilistic consequences in the case of ``subtractive'' urns are new representations for the probability distribution of the urn's composition at any time n, structural information on the shape of moments of all orders, estimates of the speed of convergence to the Gaussian limit and an explicit determination of the associated large deviation function. In the general case, analytic solutions involve Abelian integrals over the Fermat curve x^h+y^h=1. Several urn models, including a classical one associated with balanced trees (2-3 trees and fringe-balanced search trees) and related to a previous study of Panholzer and Prodinger, as well as all urns of balance 1 or 2 and a sporadic urn of balance 3, are shown to admit of explicit representations in terms of Weierstra\ss elliptic functions: these elliptic models appear precisely to correspond to regular tessellations of the Euclidean plane.Comment: Published at http://dx.doi.org/10.1214/009117905000000026 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    On the non-holonomic character of logarithms, powers, and the n-th prime function

    Full text link
    We establish that the sequences formed by logarithms and by "fractional" powers of integers, as well as the sequence of prime numbers, are non-holonomic, thereby answering three open problems of Gerhold [Electronic Journal of Combinatorics 11 (2004), R87]. Our proofs depend on basic complex analysis, namely a conjunction of the Structure Theorem for singularities of solutions to linear differential equations and of an Abelian theorem. A brief discussion is offered regarding the scope of singularity-based methods and several naturally occurring sequences are proved to be non-holonomic.Comment: 13 page

    On Buffon Machines and Numbers

    Get PDF
    The well-know needle experiment of Buffon can be regarded as an analog (i.e., continuous) device that stochastically "computes" the number 2/pi ~ 0.63661, which is the experiment's probability of success. Generalizing the experiment and simplifying the computational framework, we consider probability distributions, which can be produced perfectly, from a discrete source of unbiased coin flips. We describe and analyse a few simple Buffon machines that generate geometric, Poisson, and logarithmic-series distributions. We provide human-accessible Buffon machines, which require a dozen coin flips or less, on average, and produce experiments whose probabilities of success are expressible in terms of numbers such as, exp(-1), log 2, sqrt(3), cos(1/4), aeta(5). Generally, we develop a collection of constructions based on simple probabilistic mechanisms that enable one to design Buffon experiments involving compositions of exponentials and logarithms, polylogarithms, direct and inverse trigonometric functions, algebraic and hypergeometric functions, as well as functions defined by integrals, such as the Gaussian error function.Comment: Largely revised version with references and figures added. 12 pages. In ACM-SIAM Symposium on Discrete Algorithms (SODA'2011

    On Differences of Zeta Values

    Get PDF
    Finite differences of values of the Riemann zeta function at the integers are explored. Such quantities, which occur as coefficients in Newton series representations, have surfaced in works of Maslanka, Coffey, Baez-Duarte, Voros and others. We apply the theory of Norlund-Rice integrals in conjunction with the saddle point method and derive precise asymptotic estimates. The method extends to Dirichlet L-functions and our estimates appear to be partly related to earlier investigations surrounding Li's criterion for the Riemann hypothesis.Comment: 18 page

    The Enumeration of Prudent Polygons by Area and its Unusual Asymptotics

    Get PDF
    Prudent walks are special self-avoiding walks that never take a step towards an already occupied site, and \emph{kk-sided prudent walks} (with k=1,2,3,4k=1,2,3,4) are, in essence, only allowed to grow along kk directions. Prudent polygons are prudent walks that return to a point adjacent to their starting point. Prudent walks and polygons have been previously enumerated by length and perimeter (Bousquet-M\'elou, Schwerdtfeger; 2010). We consider the enumeration of \emph{prudent polygons} by \emph{area}. For the 3-sided variety, we find that the generating function is expressed in terms of a qq-hypergeometric function, with an accumulation of poles towards the dominant singularity. This expression reveals an unusual asymptotic structure of the number of polygons of area nn, where the critical exponent is the transcendental number log23\log_23 and and the amplitude involves tiny oscillations. Based on numerical data, we also expect similar phenomena to occur for 4-sided polygons. The asymptotic methodology involves an original combination of Mellin transform techniques and singularity analysis, which is of potential interest in a number of other asymptotic enumeration problems.Comment: 27 pages, 6 figure

    The height of random binary unlabelled trees

    Get PDF
    This extended abstract is dedicated to the analysis of the height of non-plane unlabelled rooted binary trees. The height of such a tree chosen uniformly among those of size nn is proved to have a limiting theta distribution, both in a central and local sense. Moderate as well as large deviations estimates are also derived. The proofs rely on the analysis (in the complex plane) of generating functions associated with trees of bounded height.Comment: 14 page
    corecore